Category Archives: Books

Hands-On Reinforcement Learning with R

RLwithR

Reinforcement learning (RL) is an integral part of machine learning (ML), and is used to train algorithms. With this book, you’ll learn how to implement reinforcement learning with R, exploring practical examples such as using tabular Q-learning to control robots.

You’ll begin by learning the basic RL concepts, covering the agent-environment interface, Markov Decision Processes (MDPs), and policy gradient methods. You’ll then use R’s libraries to develop a model based on Markov chains. You will also learn how to solve a multi-armed bandit problem using various R packages. By applying dynamic programming and Monte Carlo methods, you will also find the best policy to make predictions. As you progress, you’ll use Temporal Difference (TD) learning for vehicle routing problem applications. Gradually, you’ll apply the concepts you’ve learned to real-world problems, including fraud detection in finance, and TD learning for planning activities in the healthcare sector. You’ll explore deep reinforcement learning using Keras, which uses the power of neural networks to increase RL’s potential. Finally, you’ll discover the scope of RL and explore the challenges in building and deploying machine learning models.

By the end of this book, you’ll be well-versed with RL and have the skills you need to efficiently implement it with R.

  • Understand how to use MDP to manage complex scenarios
  • Solve classic reinforcement learning problems such as the multi-armed bandit model
  • Use dynamic programming for optimal policy searching
  • Adopt Monte Carlo methods for prediction
  • Apply TD learning to search for the best path
  • Use tabular Q-learning to control robots
  • Handle environments using the OpenAI library to simulate real-world applications
  • Develop deep Q-learning algorithms to improve model performance

Hands-On Reinforcement Learning with R

Keras 2.x Projects

9 projects demonstrating faster experimentation of neural network and deep learning applications using Keras.

Keras 2.x Projects explains how to leverage the power of Keras to build and train state-ofthe-
art deep learning models through a series of practical projects that look at a range of
real-world application areas.

To begin with, you will quickly set up a deep learning environment by installing the Keras
library. Through each of the projects, you will explore and learn the advanced concepts of
deep learning and will learn how to compute and run your deep learning models using the
advanced offerings of Keras. You will train fully-connected multilayer networks,
convolutional neural networks, recurrent neural networks, autoencoders and generative
adversarial networks using real-world training datasets. The projects you will undertake
are all based on real-world scenarios of all complexity levels, covering topics such as
language recognition, stock volatility, energy consumption prediction, faster object
classification for self-driving vehicles, and more.

Keras2.xProjects

By the end of this book, you will be well versed with deep learning and its implementation
with Keras. You will have all the knowledge you need to train your own deep learning
models to solve different kinds of problems.

Keras 2.x Projects

Keras Reinforcement Learning Projects

9 projects exploring popular reinforcement learning techniques to build self-learning agents

Reinforcement learning has evolved a lot in the last couple of years and proven to be a successful technique in building smart and intelligent AI networks. Keras Reinforcement Learning Projects installs human-level performance into your applications using algorithms and techniques of reinforcement learning, coupled with Keras, a faster experimental library. In the following the link at the book:

kerasrlsmall

The book begins with getting you up and running with the concepts of reinforcement learning using Keras. You’ll learn how to simulate a random walk using Markov chains and select the best portfolio using dynamic programming (DP) and Python. You’ll also explore projects such as forecasting stock prices using Monte Carlo methods, delivering vehicle routing application using Temporal Distance (TD) learning algorithms, and balancing a Rotating Mechanical System using Markov decision processes.

Once you’ve understood the basics, you’ll move on to Modeling of a Segway, running a robot control system using deep reinforcement learning, and building a handwritten digit recognition model in Python using an image dataset. Finally, you’ll excel in playing the board game Go with the help of Q-Learning and reinforcement learning algorithms.

By the end of this book, you’ll not only have developed hands-on training on concepts, algorithms, and techniques of reinforcement learning but also be all set to explore the world of AI.

Regression Analysis with R

Design and develop statistical nodes to identify unique relationships within data at scale

Regression analysis is a statistical process which enables prediction of relationships between variables. The predictions are based on the casual effect of one variable upon another. Regression techniques for modeling and analyzing are employed on large set of data in order to reveal hidden relationship among the variables.

Regression Analysis with R

This book will give you a rundown explaining what regression analysis is, explaining you the process from scratch. The first few chapters give an understanding of what the different types of learning are – supervised and unsupervised, how these learnings differ from each other. We then move to covering the supervised learning in details covering the various aspects of regression analysis. The outline of chapters are arranged in a way that gives a feel of all the steps covered in a data science process – loading the training dataset, handling missing values, EDA on the dataset, transformations and feature engineering, model building, assessing the model fitting and performance, and finally making predictions on unseen datasets. Each chapter starts with explaining the theoretical concepts and once the reader gets comfortable with the theory, we move to the practical examples to support the understanding. The practical examples are illustrated using R code including the different packages in R such as R Stats, Caret and so on. Each chapter is a mix of theory and practical examples.

By the end of this book you will know all the concepts and pain-points related to regression analysis, and you will be able to implement your learning in your projects.

Regression Analysis with R

MATLAB – Guida all’uso

MATLAB
Una guida all’uso del software matematico MATLAB, pensata per gli utenti inesperti che si avvicinano per la prima volta al suo utilizzo, ma utile anche a chi è già pratico come ausilio allo sviluppo delle sue competenze. Il libro è strutturato in modo tale che il lettore possa apprendere gradualmente le nozioni di base per il corretto utilizzo del software, e in seguito, tramite la soluzione dei più diffusi problemi di calcolo numerico, acquisire padronanza nella gestione della simulazione numerica di modelli matematici. Il testo è valido per qualsiasi versione di MATLAB: gli esempi sono basati sulla versione 7.x ma sono compatibili anche con le versioni precedenti.

libromatlabDettagli del libro

  •     Titolo: Matlab – Guida all’uso
  •     Autore: Giuseppe Ciaburro
  •     Editore: FAG
  •     Collana: Pro DigitalLifeStyle
  •     ISBN: 8882336425
  •     ISBN-13: 9788882336424
  •     Pagine: 251
  •     Formato: brossura

Giuseppe Ciaburro ingegnere chimico, svolge la sua attività di tecnico presso la Seconda Università degli Studi di Napoli. Esperto di acustica, vanta una vasta esperienza nella docenza di corsi professionali di informatica e nel campo dell’e-learning; autore e titolare del sito www.ciaburro.it.

Matlab. Versione 7.x e precedenti. Guida all’uso

Programmare con Fortran


FORTRAN

Questo manuale è contraddistinto da un approccio didattico semplice, accurato ed efficace per imparare a programmare in Fortran (versioni 90, 95, 2003). Ricco di esempi pratici, il libro guida alla realizzazione di algoritmi per la soluzione dei più diffusi problemi di calcolo numerico. Sono descritti dettagliatamente tutti i passi necessari all’utilizzo del Fortran: i comandi, la sintassi e l’uso delle variabili. Sono affrontate passo per passo tutte le tematiche della programmazione, dalla definizione delle variabili allo sviluppo degli algoritmi, alle operazioni di ingresso/uscita per finire con la visualizzazione dei dati elaborati. Tra gli argomenti trattati: Nozioni di base; Espressioni e assegnazioni; Procedure e funzioni; Moduli; Strutture di controllo del flusso; Array; Operazioni di ingresso/uscita; Visualizzazione dei dati.

Dettagli prodotto

  •     Copertina flessibile: 299 pagine
  •     Editore: FAG (29 febbraio 2008)
  •     Collana: Pro DigitalLifeStyle
  •     Lingua: Italiano
  •     ISBN-10: 8882336883
  •     ISBN-13: 978-8882336882
  •     Peso di spedizione: 499 g

libro.fortran

Sommario

  1. Introduzione
  2. Elementi di base del Fortran
  3. Espressioni e assegnazioni
  4. Strutture per il controllo del flusso
  5. Sottoprogrammi e moduli
  6. Operazioni di ingresso e di uscita
  7. Operazioni su file
  8. Array
  9. Caratteristiche innovative del Fortran
  10. Metodi numerici per la risoluzione di problemi computazionali
  11. Visualizzazione dei dati

Programmare con Fortran