Tag Archives: rstudio

Indentazione del codice in R

python

Anche se la struttura del linguaggio R prevede dei particolari delimitatori per alcuni blocchi di programma, risulta comunque utile, l’indentazione del codice in R, per la relativa individuazione.

Ricordiamo a tal proposito che per indentazione del codice s’intende quella tecnica utilizzata nella programmazione attraverso la quale si evidenziano dei blocchi di programma con l’inserimento di una certa quantità di spazio vuoto all’inizio di una riga di testo, allo scopo di aumentarne la leggibilità.

Anche se, come già detto, R prevede opportuni delimitatori per alcune strutture del linguaggio, utilizzeremo l’indentazione stessa per indicare i blocchi nidificati; a tal proposito si possono usare sia una tabulazione, sia un numero arbitrario di spazi bianchi.

Nell’utilizzo di tale tecnica è necessario ricordare delle semplici raccomandazione:

  • il numero di spazi da utilizzare è variabile;
  • tutte le istruzioni del blocco di programma devono presentare lo stesso numero di spazi di indentazione.

In tale ottica utilizzeremo la convenzione che prevede l’esclusivo utilizzo di due spazi per individuare un nuovo blocco e di tralasciare l’uso del tab. 

Per approfondire l’argomento:

Requisiti hardware di Rstudio

python

L’ambiente integrato Rstudio ci consente di avviare il calcolo al suo interno di modo da risultare completo; per fare questo però non richiede un grande sforzo in termini di potenza di calcolo da parte della macchina in uso. Dopo aver scaricato il software, per installare il programma sul nostro pc dovremo necessariamente conoscere i requisiti hardware di RStudio.

Ne deriva che i requisiti hardware richiesti per far funzionare RStudio sono minimi, quindi il numero di core, la velocità dei core e la quantità di ram di cui avremo bisogno dipenderà esclusivamente dalla mole di lavoro che l’analisi che stiamo eseguendo necessiterà. Ricordiamo a tal proposito che R è a thread singolo, e come tale, non potrà beneficiare di core aggiuntivi a meno che non si abbia familiarità con le varie librerie che ci consentono di parallelizzare il lavoro e sono quindi in grado di sfruttare più core.

Rstudio

Rstudio

Gli utenti alle prime armi nell’analisi dei dati, è improbabile che avvertano l’esigenza di un processore a più core, se non quelli attualmente installati sulle macchine in commercio e più di 1 gb di ram. Tuttavia, se si ha intenzione di analizzare insiemi di dati di grandi dimensioni (> 1gb) allora la macchina in uso avrà bisogno di una maggiore disponibilità di memoria ram. In generale, la maggior parte delle persone non sfruttano la parallelizzazione in R, e così risulta conveniente avere un processore con un minor numero di core che sono più veloci rispetto a quelli a più core.

Per approfondire l’argomento:

R studio

python

R studio è probabilmente l’unico ambiente di sviluppo sviluppato appositamente per R. È disponibile per tutte le principali piattaforme (Windows, Linux, e Mac OS X) e può essere eseguito su una macchina locale come il nostro computer o anche sul Web utilizzando rstudio Server. Con Rstudio Server è possibile fornire una interfaccia basata su browser (la cosiddetta IDE) a una versione R in esecuzione su un server Linux remoto.

R studio consente di integrare diverse funzionalità che sono estremamente utili, soprattutto se si utilizza R per progetti più complessi.

L’ambiente è composto di quattro diverse aree:

  1. Scripting area: in quest’area è possibile aprire, creare e scrivere i vostri script.
  2. Console area: questa zona è la console R effettiva in cui vengono eseguiti i comandi.
  3. Workspace/History area: in quest’area è possibile trovare una lista di tutti gli oggetti creati nello spazio di lavoro in cui si sta lavorando.
  4. Visualization area: in quest’area è possibile caricare facilmente i pacchetti e aprire file di aiuto R, ma anche cosa ancora più importante, è possibile visualizzare i grafici.
Rstudio

Rstudio

Per approfondire l’argomento: